The Dirichlet Heat Kernel in Inner Uniform Domains in Fractal-Type Spaces

نویسندگان

چکیده

Abstract This paper proves two-sided estimates for the Dirichlet heat kernel on inner uniform domains in metric measure spaces satisfying volume doubling condition, Poincaré inequality, and a cutoff Sobolev inequality. More generally, we obtain local upper lower bounds locally under geometric assumptions underlying space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Kernel Generated Frames in the Setting of Dirichlet Spaces

Wavelet bases and frames consisting of band limited functions of nearly exponential localization on R are a powerful tool in harmonic analysis by making various spaces of functions and distributions more accessible for study and utilization, and providing sparse representation of natural function spaces (e.g. Besov spaces) on R . Such frames are also available on the sphere and in more general ...

متن کامل

On statistical type convergence in uniform spaces

The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.

متن کامل

Heat Kernel Based Decomposition of Spaces of Distributions in the Framework of Dirichlet Spaces

Classical and nonclassical Besov and Triebel-Lizorkin spaces with complete range of indices are developed in the general setting of Dirichlet space with a doubling measure and local scale-invariant Poincaré inequality. This leads to Heat kernel with small time Gaussian bounds and Hölder continuity, which play a central role in this article. Frames with band limited elements of sub-exponential s...

متن کامل

Relatively and Inner Uniform Domains

We generalize the concept of a uniform domain in Banach spaces into two directions. (1) The ordinary metric d of a domain is replaced by a metric e ≥ d, in particular, by the inner metric of the domain. (2) The uniformity condition is supposed to hold only for certain pairs of points of the domain. We consider neargeodesics and solid arcs in these domains. Applications to the boundary behavior ...

متن کامل

on statistical type convergence in uniform spaces

the concept of ${mathscr{f}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{f}}$. its equivalence to the concept of ${mathscr{f}}$-convergence in uniform spaces is proved. this convergence generalizes many kinds of convergence, including the well-known statistical convergence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2021

ISSN: ['1572-929X', '0926-2601']

DOI: https://doi.org/10.1007/s11118-021-09926-z